首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3297篇
  免费   418篇
  国内免费   202篇
电工技术   136篇
综合类   182篇
化学工业   307篇
金属工艺   87篇
机械仪表   76篇
建筑科学   220篇
矿业工程   64篇
能源动力   1138篇
轻工业   53篇
水利工程   99篇
石油天然气   67篇
武器工业   9篇
无线电   476篇
一般工业技术   552篇
冶金工业   61篇
原子能技术   21篇
自动化技术   369篇
  2024年   9篇
  2023年   194篇
  2022年   272篇
  2021年   277篇
  2020年   269篇
  2019年   279篇
  2018年   195篇
  2017年   193篇
  2016年   138篇
  2015年   140篇
  2014年   197篇
  2013年   199篇
  2012年   199篇
  2011年   204篇
  2010年   126篇
  2009年   146篇
  2008年   113篇
  2007年   138篇
  2006年   93篇
  2005年   81篇
  2004年   56篇
  2003年   76篇
  2002年   59篇
  2001年   45篇
  2000年   53篇
  1999年   28篇
  1998年   28篇
  1997年   27篇
  1996年   8篇
  1995年   12篇
  1994年   18篇
  1993年   11篇
  1992年   6篇
  1991年   2篇
  1990年   5篇
  1989年   6篇
  1988年   1篇
  1987年   3篇
  1986年   4篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1979年   1篇
排序方式: 共有3917条查询结果,搜索用时 312 毫秒
11.
Water splitting is an effective way to produce hydrogen to solve the energy crisis problem, and inorganic metal compounds are widely used in electrocatalysis field due to efficient hydrogen evolution reaction (HER). Herein, we synthesize Ni2V2O7 dandelion microsphere from nickel nitrate and vanadium pentoxide by “one-step hydrothermal” way, which exhibits large specific surface area of 102.74 m2 g−1. The as-prepared Ni2V2O7 microsphere shows good electrocatalysis performances including OER overpotential of 358 mV and good stability, as well as HER overpotential of 195 mV. Furthermore, the Ni2V2O7 microsphere electrode is assembled to Ni2V2O7 microsphere//Ni2V2O7 microsphere system, showing the water splitting voltage of 1.50 V at 10 mA cm−2 by two-electrode method, which is much lower than those of commercial RuO2//Pt/C system and most of spinel oxides electrocatalysts. Our work opens up a new and facile avenue for fabricating inorganic microsphere electrocatalyst in hydrogen production field.  相似文献   
12.
This work demonstrates a facile Nb2O5-decorated electrocatalyst to prepare cost-effective Ni–Fe–P–Nb2O5/NF and compared HER & OER performance in alkaline media. The prepared electrocatalyst presented an outstanding electrocatalytic performance towards hydrogen evolution reaction, which required a quite low overpotential of 39.05 mV at the current density of ?10 mA cm?2 in 1 M KOH electrolyte. Moreover, the Ni–Fe–P–Nb2O5/NF catalyst also has excellent oxygen evolution efficiency, which needs only 322 mV to reach the current density of 50 mA cm?2. Furthermore, its electrocatalytic performance towards overall water splitting worked as both cathode and anode achieved a quite low potential of 1.56 V (10 mA cm?2).  相似文献   
13.
This paper considers the state‐dependent interference relay channel (SIRC) in which one of the two users may operate as a secondary user and the relay has a noncausal access to the signals from both users. For discrete memoryless SIRC, we first establish the achievable rate region by carefully merging Han‐Kobayashi rate splitting encoding technique, superposition encoding, and Gelfand‐Pinsker encoding technique. Then, based on the achievable rate region that we derive, the capacity of the SIRC is established in many different scenarios including (a) the weak interference regime, (b) the strong interference regime, and (c) the very strong interference regime. This means that our capacity results contain all available known results in the literature. Next, the achievable rate region and the associated capacity results are also evaluated in the case of additive Gaussian noise. Additionally, many numerical examples are investigated to show the value of our theoretical derivations.  相似文献   
14.
Water electrolysis powered by renewable electricity will likely be critical to a future hydrogen economy. However, the typical use of strongly acidic or alkaline electrolytes necessitates the use of expensive materials, while bubbles add to capital and operational costs, due to blocking of the electrode surface and the necessary use of pumps and gas-liquid separators. Here ‘bubble-free’ oxygen evolution at mild pH is carried out using an electrocatalyst that mimics photosystem II (PSII). The bubble-free electrode includes a gas-extracting Gore-Tex® membrane. Edge-functionalised graphene (EFG) is included to mimic the metal-binding local protein environment, and the tyrosine residue, in the oxygen evolving complex (OEC) of PSII, while MnOx and Ca2+ are incorporated to mimic the Mn4CaO5 cluster. Interaction between EFG, MnOx, and Ca2+ results in a significant, 130 mV fall in the overpotential required to drive electrocatalytic oxygen evolution at 10 mA cm−2, compared to the electrode without these biomimetic components.  相似文献   
15.
Constructing high-efficient and nonprecious electrocatalysts is of primary importance for improving the efficiency of water splitting. Herein, a novel sunflower plate-like NiFe2O4/CoNi–S nanosheet heterostructure was fabricated via facile hydrothermal and electrodeposition methods. The as-fabricated NiFe2O4/CoNi–S heterostructure array exhibits remarkable bifunctional catalytic activity and stability toward oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline media. It presents a small overpotential of 219 mV and 149 mV for OER and HER, respectively, to produce a current density of 10 mA cm?2. More significantly, when the obtained electrodes are used as both the cathode and anode in an electrolyzer, a voltage of 1.57 V is gained at 10 mA cm?2, with superior stability for 72 h. Such outstanding properties are ascribed to: the 3D porous network structure, which exposes more active sites and accelerates mass transfer and gas bubble emission; the high conductivity of CoNi–S, which provides faster charge transport and thus promotes the electrocatalytic reaction of the composites; and the effective interface engineering between NiFe2O4 (excellent performance for OER) and CoNi–S (high activity for HER), which leads to a shorter transport pathway and thus expedites electron transfer. This work provides a new strategy for designing efficient and inexpensive electrocatalysts for water splitting.  相似文献   
16.
Developing highly active, stable and sustainable electrocatalysts for overall water splitting is of great importance to generate renewable H2 for fuel cells. Herein, we report the synthesis of electrocatalytically active, nickel foam-supported, spherical core-shell Fe-poly(tetraphenylporphyrin)/Ni-poly(tetraphenylporphyrin) microparticles (FeTPP@NiTPP/NF). We also show that FeTPP@NiTPP/NF exhibits efficient bifunctional electrocatalytic properties toward both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER). Electrochemical tests in KOH solution (1 M) reveal that FeTPP@NiTPP/NF electrocatalyzes the OER with 100 mA cm−2 at an overpotential of 302 mV and the HER with 10 mA cm−2 at an overpotential of 170 mV. Notably also, its catalytic performance for OER is better than that of RuO2, the benchmark OER catalyst. Although its catalytic activity for HER is slightly lower than that of Pt/C (the benchmark HER electrocatalyst), it shows greater stability than the latter during the reaction. The material also exhibits electrocatalytic activity for overall water splitting reaction at a current density of 10 mA cm−2 with a cell voltage of 1.58 V, along with a good recovery property. Additionally, the work demonstrates a new synthetic strategy to an efficient, noble metal-free-coordinated covalent organic framework (COF)-based, bifunctional electrocatalyst for water splitting.  相似文献   
17.
《Ceramics International》2020,46(9):13125-13132
It is of great significance to develop highly active and cost-effective electrocatalysts for the oxygen evolution reaction and hydrogen evolution reaction in alkaline solution. Herein, we report an interface engineering strategy to fabricate 3D hierarchical CuCo2O4@CuCo2S4 heterostructure catalysts with efficient synergistic effects for water splitting. Owing to the special nano-architectures with abundant active interfaces, the as-prepared CuCo2O4@CuCo2S4 catalysts exhibit superior electrochemical activity and prominent electrochemical stability, with a small overpotential of 240 and 101 mV for oxygen and hydrogen evolution reactions to deliver a current density of 10 mA cm−2, respectively. Remarkably, the CuCo2O4@CuCo2S4 materials directly applied as both anode and cathode electrode demonstrate excellent water splitting performance, achieving 10 mA cm−2 at a low cell voltage of only 1.53 V, outperforming the integrated state-of-the-art RuO2||Pt/C couple (1.56 V). Moreover, density functional theory calculations suggest that the excellent overall water splitting property of CuCo2O4@CuCo2S4 is attributed to a large amount of hierarchical hetero-interfaces, giving rise to effective adsorption and cleavage of H2O molecules on the catalyst surface. This work represents a general strategy to exploit efficient and stable hybrid electrocatalysts for renewable energy applications by rational catalyst interface engineering.  相似文献   
18.
Monolithically-integrated tandem photoanodes were fabricated on substrates consisting of epitaxial n-GaAs1-xPx (x ? 0.32) grown on n+-GaAs wafers. A p+-n junction photovoltaic (PV) cell was first formed by zinc diffusion into the n-GaAs0.68P0.32 from a deposited ZnO coating. After diffusion the ZnO serves as a transparent electrical contact to the resulting p+-GaAs0.68P0.32 surface layer. Transparent, conducting SnO2:F provides chemical and mechanical protection for the ZnO and the underlying PV cell, and it electrically connects this cell to a top BiVO4 photocatalyst layer. In some photoanodes, a WO3 thin film was interposed between the SnO2:F and BiVO4. All oxide coatings were produced by ultrasonic spray pyrolysis except WO3, which was spin coated. Unassisted (unbiased) solar water splitting was achieved, with a solar-to-hydrogen efficiency approaching 2%, without addition of any co-catalyst to the BiVO4 surface. This work can provide insights to other researchers regarding scalable, low cost approaches for the planar monolithic integration of oxide photoanode materials with PV cells to create new tandem devices.  相似文献   
19.
Single phase, crystalline NaFeTiO4 with tunnel structure is prepared by a solid state method and explored as a novel photocatalyst for the first time. Structural, optical and morphological properties of NaFeTiO4 are investigated by various characterization techniques such as X-ray diffraction (XRD), scanning & transmission electron microscopy (SEM & TEM), Energy dispersive X-ray spectroscopy (EDS), N2 adsorption-desorption study (BET), UV-vis, X-ray photoelectron, X-ray absorption (UV-vis DRS, XPS and XANES) and photoluminescence (PL) spectroscopy. The interfacial charge transfer ability of the prepared n-type NaFeTiO4 was also investigated by transient photocurrent response and electrochemical impedence spectroscopy which proved to be an efficient tool for better understanding of electronic properties of NaFeTiO4. The photocatalytic efficiency of NaFeTiO4 is evaluated for decomposition of methylene blue (MB) and Rhodamine B (RhB) dyes as well as for H2 evolution through water splitting reaction under visible light. NaFeTiO4 exhibits efficient charge separation properties, excellent photocatalytic activities and reusability.  相似文献   
20.
Performance enhancing proxies (PEPs) are widely used to improve the performance of TCP over high delay‐bandwidth product links and links with high error probability. In this paper we analyse the performance of using TCP connection splitting in combination with web caching via traces obtained from a commercial satellite system. We examine the resulting performance gain under different scenarios, including the effect of caching, congestion, random loss and file sizes. We show, via analysing our measurements, that the performance gain from using splitting is highly sensitive to random losses and the number of simultaneous connections, and that such sensitivity is alleviated by caching. On the other hand, the use of a splitting proxy enhances the value of web caching in that cache hits result in much more significant performance improvement over cache misses when TCP splitting is used. We also compare the performance of using different versions of HTTP in such a system. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号